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Abstract
Over the last two decades, cities in India have seen significant urban growth accompanied by 
green cover loss. Recently however, there has been a growing interest in urban and peri-urban 
agriculture (UPA) in these urban areas. The extent to which UPA mitigates the effects of 
urbanization is unclear. The present study aims to quantify the impact of UPA in the cities of 
Chennai and Bengaluru in India. Past trends of urban growth and green cover depletion are 
used to predict how urbanized Chennai and Bengaluru will be in the future, using CA Markov 
techniques on GIS data. A survey was then carried out to understand the general perception 
and growth trends pertaining to UPA. This survey data was then combined with our land use 
model to predict the growth of UPA in Chennai and Bengaluru in the future. These ‘future 
maps’ were then used to quantify the impact of UPA on biomass and land surface 
temperatures. We find that UPA can play a small, but not insignificant role in augmenting 
carbon stock and bringing down land surface temperatures and propose that urban 
development policies consciously include the role of UPA. 

Keywords:  LULC analysis, CA-Markov models, Urban and Peri-urban agriculture, Land 
Surface Temperature, Carbon density
     
  
1. Introduction
The growth and expansion of urban areas in India has led to an increase in our built 
environment stock accompanied by several environmental impacts such as the depletion of 
green spaces, water logging and an increased heat island effect (Nirupama and Simonovic, 
2007; McDonald et al 2012; Weng, 2001; Feng et al 2014). This trend is likely to continue 
and urban India may house nearly 600 million people by 2030 (UN World Urbanization 
Prospects, 2018). It is therefore important to analyse urban growth trends and their 
consequences to both predict future environmental impacts, and to decide upon policy 
interventions that can lead to more liveable futures. 

Urban and peri-urban agriculture (UPA) has been touted as a potential solution that 
counteracts the environmental impacts of urbanization and has been shown to have positive 
effects on food production, air quality and other aspects of urban life. There is growing 
evidence that urban and peri-urban agriculture and forestry (UPAF) can play a role in poverty 
alleviation and potentially reduce vulnerability to climate change (Lwasa et al., 2014; 
Asomani-Boateng and Haight, 1999; International Development Research Centre (Canada), 
2011; Lee-Smith, 2010; Ricci, 2012; Masashua et al., 2009).  Urban forestry can improve 
energy supplies by producing biomass that is an important source of energy as shown in sub-
Saharan African cities (Drescher, 2002). Agroforestry also provides shade, which can bring 
about changes in microclimatic conditions such as air and land temperature (Belsky et al, 
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1993; VandenKubeldt and Williams, 1992). Agricultural lands and urban gardens increase 
evapotranspiration, thereby lowering temperatures through evaporative cooling (Corburn, 
2009). A study on the impact of urban gardens in Brooklyn, NY in October for instance 
reported a temperature reduction from -0.2F to -0.9F (ibid).  Green spaces have also been 
negatively correlated with air pollution. Greater spatial aggregation leads to more centralized 
green spaces, which facilitate the reduction of air pollution and urban temperatures leading to 
a decrease in the annual averages of PM10 and NO2. (Ku,2020). 

Despite these and other related studies as well as the prevalence of urban farming in Indian 
cities, the impact of UPA in mitigating the environmental impacts of urbanization, and 
consequently its potential to be used as a policy intervention mechanism for sustainable 
urbanization is unclear. Quantification of UPA impacts is a necessary first step in overcoming 
this challenge. This can be done through a variety of measures. This paper focuses on the 
quantification of 3 major environmental metrics that can be influenced by UPA. These 
metrics are -

1. Biomass estimation
2. Change in NDVI (Normal Difference Vegetation Index)
3. Change in LST (Land Surface Temperature)

Having extra green cover accounts for an increase in the carbon stock/biomass available in a 
region (Lwasa et al., 2014). This increased biomass can have an impact on the quantity of 
fruits and vegetables available in dense urban regions and can also help sequester extra 
amounts of CO2 from the atmosphere. The growth of urban areas also affects the NDVI 
which is a measure of the green cover quality (Parece and Campbell, 2017). While 
urbanization will reduce NDVI, UPA is likely to increase it. Finally, the impact of land cover 
change on air quality and LST was reported by Weng and Yang (2006). Local pollution 
patterns in cities are mainly related to the distribution of different land use and land cover 
categories, the occurrence of water bodies and parks, building and population densities, the 
division of functional districts, the layout of transportation networks, and air flushing rates 
(Weng and Yang, 2006). A higher level of latent heat exchange was found with more 
vegetated areas, while sensible heat exchange was more favored by sparsely vegetated areas 
such as urban impervious areas (Oke, 1982). This contributes to the development of the 
Urban Heat Island (UHI) effect (Kafy, 2019; Di Leo et al. 2016) which has an impact on 
Land Surface Temperatures.  

The objective of this paper is thus to quantify the impact of UPA on Biomass, change in 
NDVI and change in LST as Indian cities grow, and investigate the extent to which UPA can 
serve to influence the microclimate of a city. We next present our research design and 
methodology followed by our results. The paper concludes with a discussion on the 
quantitative impacts of UPA and its implications to policy.
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2. Methodology
Our methodology is divided into 3 steps. Since our objective in this paper is to investigate the 
impacts of UPA in conjunction with the growth and evolution of cities, we opted for a 
simulation based approach. Land Use Land Cover (LULC) simulation analysis deals with the 
change in land use patterns. It tracks the growth or decline of croplands, urban areas, 
wetlands, forests etc. As a result the first step involved performing a LULC simulation. This 
involved gathering geo-referenced data from satellite images (LANDSAT) across different 
time periods as well as regional data such as population density, slope and elevation, 
commercial areas etc in a given geography. The land cover satellite images were then 
classified into the following four categories - Built-Up, Green Cover(crops/forest), Water 
bodies and Other. Trends in land cover change over time were analyzed and used to project 
land cover patterns in the future, using mathematical techniques that are explained in detail in 
subsequent sections below. 

The second step involved incorporating micro-level data to understand the spatial and 
temporal growth of urban and peri-urban agriculture since the growth of UPA was not 
directly apparent from the LULC simulation. This data was captured from a survey and was 
integrated into the LULC simulation to predict the growth of UPA. The last step consisted of 
quantifying the impact of UPA through calculating the change in NDVI, LST and Biomass 
between current and future land cover configurations using established equations. 

Each of these steps and their results are now described in detail. Two cities were taken up for 
this study. The first was Bengaluru, the capital city of Karnataka along with its neighboring 
districts. A 3600 sq km area was taken for the study. The other city, Chennai, is located on 
the south-eastern coast of India and is the capital city of the state of Tamil Nadu. The study 
area taken up was 3834 sq.km which includes the Chennai metropolitan area. Both cities have 
similar demographics, and serve the IT and other industries. 

3.      Land Use Land Cover Simulations
Various spatial and temporal techniques such as CA-Markov models and Logistic 
Regression, have been used in the past by other researchers to predict urban expansion (e.g. 
Hamad et al, 2018; Rimal et al, 2018; Arsanjani et al, 2013; Liu et al, 2019). We chose to use 
the CA-Markov model due to its ability to efficiently combine spatial characteristics through 
Cellular Automata (CA) approaches and temporal predictions using Markov chains. It also 
can simulate manifold land covers and multifaceted patterns and hence is ideally suited for 
understanding and predicting future land-use change patterns. To improve the efficiency of 
our model and the accuracy of our predictions, CA-Markov techniques were combined with 
Linear regression and Artificial Neural Network/Multilayer Perceptron (ANN/MLP) 
techniques (Li et al, 2002). Each of these techniques are unpacked below. 

Markov model
A first-order Markov model assumes that to predict the state of the system at a future time 
step t+1, one need only know the state of the system at the current time t. The heart of a 
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Markov model is the transition matrix P, which summarizes the probability that a cell with 
land cover type ‘i’ will change to land cover type ‘j’ during a single time step.
Consider the present land cover as a matrix L(t) at time ‘t’ and a transition probability matrix 
P. Then the land cover map at time t+1 as a matrix L(t+1) is given by the relationship 

L(t+1) = P.L(t)  where P is a probability matrix as shown below

𝑃 =  [𝑃11 𝑃22 … 𝑃1𝑚
𝑃21 𝑃22 … 𝑃2𝑚

⋮ ⋮ ⋮ ⋮
𝑃𝑛1 𝑃𝑛2 … 𝑃𝑛𝑚]

Each term Pij in the matrix represents the probability of a transition from state j to state i 
where i and j both represent different land cover types. The total probability rule can be 
extended for multiple time periods as well (Plavnick, 2008). The transition probability matrix 
from state 0 to state 2 is therefore given by the formula,

P20  = P(L2|L0) 
 = P(L2|L1).P(L1|L0)
 = P21 . P10

Given a transition probability matrix for land cover, an initial land cover matrix and a time 
period, Markov chains can help predict the land cover composition at the end of this time 
period. (Hua, 2017;  Huang et al, 2015)

Cellular Automata (CA) model
The spatial influence of various land use types in predicting the land use cover is modelled by 
a Cellular Automata model. While Markov models give us a global distribution of land cover 
types, CA models allow us to localize and determine which cells in a space correspond to a 
particular land cover type (Mitsova et al, 2011; Guan et al, 2011) This model treats land 
cover as a lattice with individual pixels / cells being called an automaton. The cellular state 
represents the land use type. A cell together with its surrounding cells is a neighborhood. The 
state of each cell is influenced by the surrounding cells. The state of each cell at a point in 
time is given by the following equation.

{St+1} = f({St} * {Ith} * {V})

{St+1} and {St} are the states of the cell in the CA at time t + 1 and t, {Ith} refers to the 
neighborhood where h is the neighborhood size, {V}is the suitability of a cell and f is a 
function that denotes the transition rules. Beyond the influence of neighboring cells, the CA 
model determines land use type as a function of several input variables. For example, the 
population density, slope, road network, distance to the business districts, location of water 
bodies etc. play a role in determining the land use cover. For instance, the greater the 
population density, the more the urban growth will be while a more uniform slope of 
population growth may promote agricultural land. Based on these factors and rules, change in 
land cover is modeled over time. 
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Artificial Neural Network, Multilayer Perceptron (ANN/MLP) model
The ANN/MLP model augments the CA model and allocates pixels to each land cover 
category based on a probability map. The probability map is derived from the input variables 
mentioned above (land characteristic maps such as slope, elevation, population density). This 
model performs various land use transitions simultaneously and works on the principle of 
training and testing data. We first categorize the 4 land-use classes – green, built-up, water 
and other uses into 8 parts - 4 transition classes and 4 persistent classes. The ANN/MLP 
constructs a network of neurons between the input values from the explanatory variables and 
the eight output classes (the transition and persistence classes) and a web of connections 
between the neurons that are applied as a set of (initially random) weights. 

The ANN/MLP sub-model we used consists of 1 input layer, and several hidden layers that 
lead to an output layer. The training process involves training 50% of pixels taken from both 
transitioned and persisted pixels to understand which combination of explanatory variables 
leads to a change in land cover. This understanding is then tested on the remaining 50% for 
validation and assessment. Once validated, the ANN/MLP uses these rules to affect land 
cover change. 

Taken together, the Markov model allows us to understand how the various land cover 
categories change over time through the use of transition matrices. The CA model then uses 
cell transition rules to allow us to accurately distribute these land cover types spatially across 
our map, taking into account explanatory variables such as population density, elevation etc 
as well as neighborhood effects of cells. The ANN/MLP algorithms optimize this process by 
ensuring that the model learns through iterations and then applies these learnings to 
simultaneously change land use over time, consistent with the constraints given by the 
Markov and CA approaches. These approaches were therefore combined to develop our 
LULC simulation. 

Data for the Simulation
The data required for the LULC portion of this study were obtained from raster maps of 
Chennai and Bengaluru. For the city of Chennai, land cover maps for the years 1997, 2009, 
2017 and for Bengaluru land cover maps of 2011, 2016 and 2020 were obtained. These maps 
were extracted from LANDSAT-4 images. A maximum likelihood function was used to 
convert the map data into four different land categories – Urban Built-up, Green, Water and 
Other (barren). Each of these land categories was given a unique value – Urban Built-up (1), 
Green (2), Water (3) and Other (4). Figure 1 shows the maps that we obtained for Chennai 
and Bengaluru.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4061025

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



6

     Figure 1. Base maps for Bengaluru and Chennai

Data for a set of variables, namely Slope, Elevation and Population Density, and Restricted 
areas were downloaded from various sources such as the Global Human Settlement Layer 
(GHSL) and Open Street Maps (OSM). The values for other variables such as the distance to 
the nearest road (Euclidean distance from each pixel to the major roads) and the distance to 
the urban area (Euclidean distance from each pixel to the urban area – central part of the 
map) were calculated based on data downloaded from these sources using Euclidean distance 
formulae. Some of these maps are shown in Figure 2 below.
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     Figure 2. Input variables for Chennai and Bengaluru

Model Development
The initial LULC analysis was performed by grouping pixels with identical values and 
finding out the number of pixels for each integer value. Each pixel/cell represents an area of 
30x30 m in real life. Using this the total area of each land cover category can also be 
calculated. The 2011 and 2016 maps for Bengaluru were then compared as were the 1997 and 
2009 maps for Chennai to determine the number of pixels that were converted from one land 
use category to another. The results were expressed in matrix form. By dividing each of these 
values by the total pixels, we obtained a Transition Probabilities matrix for each city. 

The transition probability matrix for Chennai is shown in Table 1 below. This matrix 
represents the probability with which each land use category is likely to be converted into 
another category. As an example a land cell in Chennai of category 2 (green space) in 1997 is 
likely to change into category 3 (water) in 2009 with a probability of 0.00953. 
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Table 1. Transition probability matrix for Chennai from 1997 to 2009

Once a base year and a transition probability matrix has been established, the total number of 
cells of a particular land cover type at a future point in time can be estimated. However it is 
vital that these cells be distributed across the landscape in a realistic fashion. This special 
distribution is accomplished through the Cellular Automata model. Here raster maps are 
developed for each of six different land features - population density, slope, elevation, 
distance to the nearest road, distance to central business district, and restricted areas. These 
are treated as the input variables that influence land use change. An actual land use map in 
the future is fixed as a target, and the CA model in combination with the ANN/MLP module 
iterates between coefficients for these variables that lead to a land use distribution that best 
matches the distribution in the future land use map. Finding these coefficients can be done via 
a number of methods, the most prominent being the MCE (Multi Criteria Evaluation) 
approach where each land feature map is given a certain weight while predicting the future 
pixels of a land use category. For example, for predicting the urban growth, the population 
density map may be given a higher weight at the outset than other maps in predicting the 
outcome. Similarly for predicting the change in croplands the slope map may be given a 
higher weightage. These weights are then multiplied up to each land feature map and a 
transition potential/suitability map is generated. These are the final processed maps that are 
used to simulate land use changes in future periods.

The CA Markov analysis was done using PLUS - a raster-based Cellular Automata (CA) 
model for land use/land cover (LULC) change simulation. The PLUS model integrates Land 
Expansion Analysis Strategy (LEAS) and Cellular Automata Random Seeds (CARS). The 
LEAS module investigates the underlying transition rules for future land cover simulations. 
The CARS module uses cellular automata to perform the simulation (Liang et al, 2021). 

Random Forest Regression techniques were used in the LEAS module to iterate between 
input variables and a land expansion map to create development potential maps for each land 
cover type (Urban Built-up, Green, Water, Other). These maps represent the likelihood of 
each pixel developing into the corresponding land cover type. In the CARS section, the land 
use map of the initial period, the development potential maps from the LEAS model, 
constraint maps, Land demands, Transition Matrix and Neighborhood weights are used to 
develop a predicted Land use map. 

Modeling and Validation
The following constraint matrices represented in Tables 2 and 3 were also used to prevent 
unviable transitions (e.g. urban built-up areas transitioning into water bodies) where 1 
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indicates transitions that are allowed and 0 indicates transitions that are not allowed. These 
matrices lead to two scenarios, one in which green spaces can transition into unused spaces 
and another in which this transition is not allowed.

Table 2. Transition rule matrix 1

Table 3. Transition rule matrix 2

The values of the weights shown in Table 4 correspond to the hierarchy in which the 
neighbourhood effects take place. For example, in a 3x3 neighborhood, out of the 8 pixels 
that surround a pixel if there are 3 urban pixels (weight = 1) and 3 green pixels (weight = 
0.25), then the pixel will be allotted the urban land cover value as the weight is higher. The 
scenarios were developed through an iterative process. In total, there will be 4 different 
scenarios for each city based on 2 different transition rule matrices and 2 different sets of 
weights.

Table 4. Weights/Cost matrix

The Kappa statistic and Accuracy are the most common measures used to validate such 
models (Mondal et al, 2016). Accuracy is the ratio of the number of pixels that were 
predicted correctly to the total number of pixels.  We used PLUS to predict land use maps for 
Chennai in 2017 and Bengaluru in 2020 based on the transition matrices generated (using 
base land use maps from 1997 and 2009 for Chennai and 2011 and 2016 for Bengaluru) and 
input variables and compared these with the actual maps for these years. Tables 5-6 display 
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the accuracy with which we were able to predict the land cover in Chennai in 2017 and in 
Bengaluru in 2020.  

Table 5. Accuracies for Chennai
Case Accuracy Kappa
1.1 76.33 0.6695
1.2 76.04 0.6652
2.1 76.07 0.666
2.2 76.12 0.6663

Table 6. Accuracies for Bengaluru

Case Accuracy Kappa
1.1 68.43 0.5226
1.2 68.34 0.521
2.1 67.83 0.5132
2.2 68.22 0.5194

The explanatory variables (input variables) were iteratively used to see which combinations 
provided the best results. Often, a lot of mismatches happen at the outer edges of the urban 
area. An alternative that we explored was to resize the map and focus more on the central 
portion of these cities. Hence, a new set of maps which are 75% of the size of the original 
maps were made and the same models were run again. There was no significant improvement 
in accuracies and kappa values when this resized map was used. These levels of accuracy 
ranging between 67% and 77% show that the predictive power of the model is acceptable but 
also indicate that changes in between time periods are not necessarily predicated on trends 
experienced in previous time periods and that urbanization and land cover change happen at 
differing rates over time. 

Having established the usability of the model, we next turned to the process of incorporating 
UPA and farming as a land cover category in these maps.

4. Understanding the growth of UPA in Chennai and Bengaluru
The land cover categories that we used – urban built-up, water, green and other, were not 
granular enough to allow us to understand the spread of UPA. For instance the proportion of 
urban built-up areas that constituted rooftop gardens or practiced terrace farming could not be 
derived from the satellite data. Therefore to integrate the growth of UPA into the larger 
LULC simulations of Chennai and Bengaluru, we conducted a survey to identify specific 
trends related to UPA. Once identified, these trends could then be integrated into our model 
as described below. The purpose of the survey undertaken in the Chennai and Bengaluru 
region was to understand the number and type of people who are engaged in urban farming, 
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the activities that they performed and temporal shifts in the amount of urban farming 
undertaken. The data collected in the survey can be broken into the following categories:

1. Location data to understand where people are engaged in urban farming
2. Personal data to understand their demographics better.
3. The extent of farming activities: area of farm/garden, kinds of plants and trees
4. Farming practices and experience: type of farm, mode of farming, how long they 

have been engaged in farming, earlier land cover type, increase or decrease in the 
size of their farms.

5. Future plans: likelihood of continuing with urban farming or not, future 
increase/decrease in area, likely area of new garden/farm, what type of area will 
people use.

The survey was made available both digitally and in print and a publicity campaign was 
undertaken to encourage citizens from Chennai and Bengaluru to fill in the survey. We then 
extracted the following types of data from the survey:

1. Number of people currently engaged in UPA
2. Location- Where UPA farms were located, types of land cover that were being 

converted into UPA.
3. Average area of a garden/UPA farm
4. Increase/decrease in UPA area per year in the past.
5. The kinds of plants and produce that were being grown as well as the means of 

growing (e.g. pots, baskets, or ground).
6. Respondents’ aspirations for the future in terms of expanding, contracting or 

maintaining their farms
7. UPA growth factor based on the number of new people who have taken to urban 

farming in previous years.

We created a new fifth category in our land cover classification called ‘farming’ to denote the 
extent of area where UPA was being undertaken. Two tasks were undertaken. The first was to 
estimate the total number of pixels that could be attributed to farming, and the second was to 
distribute these pixels on the map. While our data was able to help us understand the average 
UPA farm holding size, the kinds of crops grown and the rate at which UPA farms such as 
terrace gardens were likely to grow (based on respondents answers to questions regarding 
whether they planned to start up, expand, decrease or maintain UPA areas in the future as 
well as data on past trends such as when they had started farming and how they have 
expanded in the past) we did not have sufficient data on the percentage of the population that 
was engaged in UPA at the current time. As a result, three scenarios were taken into 
consideration:

● Scenario 1: When 1.5% of total households are engaged in farming
● Scenario 2: When 2.5 % of total households are engaged in farming
● Scenario 3: When 3.5 % of total households are engaged in farming

These scenarios were selected based on an estimate of the proportion of people in a city likely 
to be engaged in UPA. Based on the above scenarios, the number of farming pixels for 
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Chennai and Bengaluru were calculated and pixels from other land cover categories were 
replaced with these farming pixels on the map. In the case of Bengaluru, the average area of 
farming land per person was found to be 11,796.78 sq. feet in 2016 and 12,596.47 sq. feet in 
2020 based on the survey collected. This data coupled with the percentage of the population 
engaged in farming, a 3% annual growth rate of UPA that we obtained from our survey, as 
well as the 30mx30m dimension of each pixel allowed us to calculate the number of farming 
pixels in our map for 2016 and 2020 under each of the three scenarios The number of farming 
pixels for Bengaluru is represented in Table 7 below. 

Table 7. Bengaluru Scenarios for modeling

Scenarios Farming 
Pixels- 2016

Farming 
Pixels- 2020

 When 1.5% of total households are 
engaged in farming 42718 54444

When 2.5% of total households are 
engaged in farming 71362 87925

When 3.5% of total households are 
engaged in farming 102984 129508

In the case of Chennai, the average farming land per person was found to be 686.145 sq. feet 
for the year 2020. Since the extent of UPA in Chennai appeared to be lower than that in 
Bengaluru the three scenarios for Chennai involved 1%, 2% and 3% of the population 
undertaking UPA respectively. A growth factor of 3%, similar to that in Bengaluru was taken 
into consideration. Given the relatively smaller landholdings for UPA in Chennai, we first 
assumed that an area of a minimum of one pixel on our map was used by each urban farmer. 
This was then used to calculate the total area and consequently the number of pixels of urban 
farming in our map under each of the three scenarios. This is depicted in Table 8.

Table 8. Chennai Scenarios for modeling

Scenarios
Farming 

Pixels in 2009

Farming pixels 

in 2017

1% of total households are engaged 

in farming
18967 24042

2% of total households are engaged 

in farming
38327 48434

3% of total households are engaged 

in farming
58460 72231
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Image processing and reclassification
Having arrived at an estimate of the extent of UPA in Chennai and Bengaluru, our next task 
was to distribute these landholdings on our existing maps. NDVI images acquired from 
online resources proved helpful in reclassifying pixels from other land use categories into 
farming. Satellite images from LANDSAT 5, LANDSAT 7 and LANDSAT 8 were 
downloaded from the United States Geological Survey’s (USGS) – Earth Explorer website. 
These consisted of maps in the visible and IR range spectrum, which helped calculate the 
NDVI and LST.

The NDVI map ranges varied from -1 to 1. The NDVI range for urban farming was selected 
based on the survey data collected: The data indicated that more than 90% (91.11%) of the 
farming pixels were earlier a part of urban built-up area while the remaining pixels were part 
of the ‘other’ category. From this information, we selected an NDVI range from the tail-end 
of values for urban built-up space to the start of vegetation (0.055 to 0.08 in Bengaluru and 
0.0725 to 0.1 for Chennai). Once this was done, farming pixels were randomly placed in cells 
which fit this NDVI range subject to the constraints from Tables 7 and 8. Based on these 
assumptions, the four land cover categories maps were converted to 5 land cover categories 
maps for each scenario. 

5. Predicting Future Scenarios for UPA
Based on the six scenarios discussed in the previous section (3 each for Bengaluru and 
Chennai), future land cover maps were predicted using Markov Chain analysis. Maps with 5 
land use categories (including urban farming) were first created for 2009 and 2017 for 
Chennai, and 2016 and 2020 for Bengaluru as described in the previous section. 5x5 
transition matrices for both Chennai and Bengaluru were then obtained by comparing these 
two maps. Transitions between other categories not involving urban farming (built-up to 
vegetation for instance) as well as the influence of the other input variables remained similar 
to those in the original 4x4 transition matrices that had been validated. These new 5x5 
matrices were used for future predictions. The base model was run until 2032 in the case of 
Bengaluru and 2041 in the case of Chennai. Tables 9 and 10 depict the transition matrices 
that were used. 

Table 9: Transition Matrices for Bengaluru
scenario 1: 1.5% of households engaged in farming

2016-2020 built-up vegetation water other farming
built-up 0.989151 0 0 0 0.010849

vegetation 0.132913 0.46089 0.006229 0.399469 0.000498
water 0.085949 0.141962 0.553494 0.216408 0.002187
other 0.13529 0.136322 0.003911 0.723248 0.001228

farming 0 0 0 0 1
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scenario 2: 2.5% of households engaged in farming

2016-2020 built-up vegetation water other farming
built-up 0.984949 0 0 0 0.015051

vegetation 0.132488 0.461323 0.006167 0.399418 0.000604
water 0.085562 0.142677 0.55176 0.216266 0.003735
other 0.13486 0.136664 0.003864 0.723034 0.001578

farming 0 0 0 0 1

scenario 3: 3.5% of households engaged in farming
2016-2020 built-up vegetation water other farming

built-up 0.974154 0 0 0 0.025846
vegetation 0.13194 0.461722 0.006034 0.399351 0.000953

water 0.084802 0.143555 0.54867 0.215295 0.007678
other 0.134286 0.137043 0.003731 0.722299 0.002641

farming 0 0 0 0 1

Table 10: Transition matrices for Chennai 

scenario 1: 1% of households engaged in farming
2009-2017 built-up vegetation water other farming

built-up 0.993797 0 0 0 0.006203
vegetation 0.09937 0.521834 0.009501 0.368714 0.000581

water 0.00302 0.017185 0.958059 0.021571 0.000165
other 0.112617 0.313315 0.012698 0.55985 0.00152

farming 0 0 0 0 1

scenario 2: 2% of households engaged in farming
2009-2017 built-up vegetation water other farming

built-up 0.987705 0 0 0 0.012295
vegetation 0.098791 0.522271 0.009397 0.368392 0.001149

water 0.002951 0.017061 0.958309 0.021235 0.000445
other 0.111439 0.314285 0.012634 0.55869 0.002952

farming 0 0 0 0 1
          

scenario 3: 3% of households engaged in farming
2009-2017 built-up vegetation water other farming

built-up 0.983744 0 0 0 0.016256
vegetation 0.098248 0.522849 0.009262 0.368038 0.001603

water 0.002871 0.016908 0.958659 0.020848 0.000714
other 0.110218 0.31515 0.012511 0.557941 0.00418

farming 0 0 0 0 1
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For the Bengaluru region, using transition matrices generated from the 2016 and 2020 maps, 
the future land cover distributions in pixels were estimated for years 2024, 2028, and 2032 
for all three scenarios. Similarly, in the case of Chennai, the future land cover distributions in 
pixels were estimated for years 2025, 2033, and 2041. Tables 11 and 12 depict this 
distribution for Bengaluru in 2024 and Chennai in 2025 while Figures 3 and 4 show these 
distributions spatially with urban farming now included as a category.

Table 11. Pixel Distribution in Bengaluru in 2024

Table 12. Pixel Distribution in Chennai in 2025
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Figure 3. Predicted Land Cover map of Bengaluru in 2024
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Figure 4. Predicted Land Cover map of Chennai in 2025

6. Analyzing the impact of UPA
After simulating the urban farming growth in terms of area, our next step was to quantify this 
growth in terms of impact. As discussed earlier, three metrics - carbon stock estimation, 
NDVI and LST are used to quantify the impacts of growth in urban and peri-urban 
agriculture. 

Carbon stock estimation
Carbon stock is the amount of carbon available in the form of biomass, soil, deadwood, litter 
etc. The higher the carbon stock is, the higher will be the ability of the region to sequester 
CO2. Afforestation is one of the indirect methods used to sequester CO2. Hence, a growth in 
urban and peri-urban agriculture will also lead to an increase in the carbon sequestration 
potential in urban areas. One of the traditional ways to calculate the carbon stock is by 
estimating the biomass present in the trees and plants and then using a conversion factor to 
convert it into carbon stock (Petrokofsky et al, 2012). Traditionally, biomass is estimated 
through practical ways where measurements are made for the trees growing in a parcel of 
land. Then based on the wood densities and other factors such as a crop coefficient, the 
biomass is calculated. For the present study, the types of plants grown are estimated and 
based on their distribution, the biomass values (per unit area) for similar vegetation are taken 
from existing literature in order to calculate the total biomass content in each city that is 
contributed by UPA. The survey data provides insights into the types of trees that are grown 
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and also the size of the farm. By combining this data and the values of biomass from external 
studies, we arrived at an estimate of the available total biomass.

From the survey we observed that 50% of the farms are sub-300 sq.ft., 20% are more than 
1000 sq. ft. and the remaining 30% are in between. 24% of the responses mentioned an 
increase in the farm area over time, 12% suggested that farm areas had decreased and for 
64% the farm size remained the same. We assumed that the larger farms have fruit trees and 
benchmarked them with mango and orange trees, while we assumed the small and medium 
farms had a mix of plants and trees. Two cases/scenarios are assumed where the composition 
of vegetation varies slightly across farm categories. The types of vegetation that we 
considered in each case are shown in Table 13. Typical plants in these categories and their 
corresponding biomass values for these kinds of vegetation are shown in Table 14. 

Table 13: Cases and vegetation types

Table 14. Biomass values

 
Based on the build out till 2032 in Bengaluru and 2041 in Chennai, the number of farm 
holdings of each of the three sizes is estimated as a proportion of the total farming pixels. For 
each of these farmholding types, the carbon density was calculated using the case 
assumptions in Table 13 and the corresponding biomass values in Table 14 and aggregated to 
arrive at the aggregate tonnage of biomass that resulted due to UPA in these cities. Results 
for Chennai and Bengaluru are presented in the form of graphs in Figures 5 and 6. In each 
city we simulated 3 scenarios of varying initial populations engaged in UPA as discussed 
earlier along with two different configurations of plant mixes in the urban farms leading to 6 
different cases in each city. The amount of biomass available increases over time as the 
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models suggest growth in urban and peri urban farming. There is a 91% to 102% growth in 
biomass in the case of Bengaluru and an increase of 81% to 125% in the case of Chennai 
across the six scenarios. 

Figure 5. Estimated Biomass growth for Chennai due to UPA
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Figure 6. Estimated Biomass for Bengaluru due to UPA

Change in NDVI
Normalized Difference Vegetation Index (NDVI) is a simple vegetation index that identifies 
vegetation ‘greenness’ and is used in many different applications. The NDVI is an 
empirically derived index used to estimate plant biomass through the integration of the red–
visible and near-infrared spectral regions to represent plant pigmentation and chlorophyll 
content respectively, in the characterization of land cover conditions. NDVI data were 
aggregated to pixels through a flat field aggregation approach in which each pixel contributed 
equally to the areally averaged value. We used the formula below:

(Ndossi and Avdan, 2016)𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅 ‒  𝑅𝐸𝐷 / 𝑁𝐼𝑅 +  𝑅𝐸𝐷 
where NIR is the near infrared brightness value, and RED is the red visible brightness value.
The NDVI maps obtained from the satellite images have pixel values ranging from -1 to +1. 
A preliminary analysis on the change in mean NDVI values across the city reveals a net 
decrease in the mean NDVI over the last decade. This net change was -0.0488 for Chennai 
and -0.1575 for Bengaluru. A similar approach is used to predict the change in NDVI in 
future due to growth in urban and peri urban agriculture through the introduction of the 
‘farming’ pixel category. Once the current year maps (2017 for Chennai and 2020 for 
Bengaluru) were reconstituted with 5 land cover types, the mean NDVI for each of the 5 
categories was calculated using ArcGIS Pro.  The results are shown in tables 15 and 16. Once 
the land cover distributions for the future were simulated, we performed a matrix 
multiplication with the average NDVI values of each land cover category to obtain the mean 
NDVI values for Chennai and Bengaluru.
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Table 15. Final mean of NDVI range for 5x5 maps (Bengaluru)

Table 16. Final mean of NDVI range for 5x5 maps (Chennai)

NDVI trends across the 3 scenarios in Chennai and Bengaluru are plotted in Figures 7 and 8 
along with a fourth scenario that assumes no farming pixels and no UPA, to understand the 
contribution of UPA to NDVI. From the graphs, it can be inferred that the NDVI trend for 
Bengaluru differs from Chennai. There appears to be an improvement in average NDVI 
Chennai but a decline in Bengaluru over time indicating that the loss of vegetation due to 
urbanization in Bengaluru has a greater impact on NDVI than the increase due to UPA. 
Irrespective of the NDVI trend however, the mean NDVI saw an improvement as the urban 
farming area increased. However, the improvement is miniscule (~0.01).
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Figure 7. Change in Mean NDVI (Bengaluru)

Figure 8. Change in Mean NDVI (Chennai)
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Change in LST
"Urban heat islands" (UHI) occur when cities replace natural land cover with dense 
concentrations of pavement, buildings, and other surfaces that absorb and retain heat. This 
effect increases energy costs (e.g., for air conditioning), air pollution levels, and heat related 
illness and mortality. Weng and Yang (2006) in their work on urban air pollution patterns, 
land use, and thermal landscape note that the relationship between air pollution and urban 
heat (and thus UHIs) is not clearly understood, although both are related to the pattern of 
urban land use and land cover. UHIs may affect air pollution (Ward and Baleynaud, 1999) 
and higher urban temperatures may generally result in higher ozone levels as well (DeWitt 
and Brennan, 2001). Higher urban temperatures may also lead to increased energy use, as air 
conditioning requirements increase. Consequently this could lead to an increased use of fossil 
fuels as well. The temperature for UHI calculation is different from the air temperatures 
which are typically measured by weather stations. The UHI is estimated through Land 
Surface Temperature (LST). The satellite used for NDVI calculations also have the band 11 
maps (part of the visible spectrum that gives the infrared maps) that were used for calculating 
LST. 
The calculation is done using the following formula (see Ndossi and Avdan, 2016)- 

LST = (BT / (1 + (0.00115 * BT / 1.4388) * Ln(ε)))
Where, TOA (L) = ML * Qcal + A

BT  =   (K2 / (ln (K1 / L) + 1)) − 273.15
Pv = ((NDVI – NDVImin)/(NDVImax – NDVImin))^2

ε     =    0.004 * Pv + 0.986
ε = emissivity, Pv = proportion of vegetation, 
TOA = Top of atmosphere spectral radiance
BT = Brightness Temperature
Qcal = corresponds to band 10.
AL = Band-specific additive rescaling factor from the metadata 
(RADIANCE_ADD_BAND_x, where x is the band number).
ML = Band-specific multiplicative rescaling factor from the metadata 
(RADIANCE_MULT_BAND_x, where x is the band number).
K1 = Band-specific thermal conversion constant from the metadata 
(K1_CONSTANT_BAND_x, where x is the thermal band number).
K2 = Band-specific thermal conversion constant from the metadata 
(K2_CONSTANT_BAND_x, where x is the thermal band number).

Since LST is a function of NDVI, mean LST values are estimated for the entire city for the 
various scenarios including the baseline scenario of no UPA, based on the NDVI data. Values 
for Bengaluru in 2020 and Chennai in 2017 are presented in tables 17 and 18 below.
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Table 17. Mean LST Values in Bengaluru

Table 18. Mean LST Values in Chennai

We then calculated the Mean LST values from 2020 to 2032 in Bengaluru and from 2017-
2041 in Chennai. The results are shown in Figures 9 and 10. Similar to the mean NDVI the 
mean LST in both the cities follows a certain trend due to their geography and local 
conditions. While mean LST in Bengaluru appears to decrease over time, mean LST in 
Chennai shows an almost monotonic increase. These values are also a function of the 
geographic location of these cities as well as the urbanization that is taking place. However, it 
can be inferred from the graph that by increasing the amount of land under urban farming 
there is a 0.150C reduction in LST in Bengaluru and in the future this improves to a 0.350C 
reduction. Similarly in the case of Chennai there is a reduction from 0.040C to 0.070C in land 
surface temperature across scenarios that is attributable to urban farming.
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Figure 9. Change in Mean LST(Bengaluru)

Figure 10. Change in Mean LST(Chennai)
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7. Discussion and Conclusion
Our simulations indicate a drastic change in built-up land over time in both Chennai and 
Bengaluru. The built-up land went from 16% in 2011 to 32% in 2020 in Bengaluru and a 
similar pattern was seen in the case of Chennai. Furthermore, the transition matrices indicated 
that urban areas rarely change to other land cover types while water bodies and vegetation are 
likely to change to urban and other uses over time. The matrices also indicate that in some 
cases this change is bi-directional. For instance vegetation area is converted to barren land 
and some percentage of barren land is then converted to vegetation due to agriculture and 
afforestation.

The biomass available due to urban farming is the extra biomass available for the city, which 
can sequester CO from the atmosphere. The amount of carbon sequestered can be found out 
from biomass with the help of certain stoichiometric equations such as the following (Chavan 
and Rasal, 2012):1. 

Amount of carbon =   0.5 * Biomass
Carbon sequestered =   3.67 * Carbon 

=   0.5 * 3.67 * Biomass 
=   1.835 * Biomass

Hence, the minimum amount of biomass attributable to UPA in Bengaluru is around 69,000 
tons, leading to around 126,615 tons of CO2 sequestered by all the urban farming that existed 
until 2020. The highest level of biomass in the future was around 140,000 tons, leading to the 
ability to sequester 256,900 tons of CO2. Therefore, the growth of urban farming from 2020 
to 2032 in Bengaluru can lead to a minimum of 130,285 tons of extra CO2 sequestered 
assuming that only 1% of the population is indulging in urban farming today. These numbers 
are quite significant. In addition the extra biomass from all these plants and trees also serves 
as biofuel, organic fertiliser, fodder and so on. 

The mean NDVI values showed a decreasing trend in Bengaluru and a slightly increasing 
trend in Chennai. The faster growth rate of urban areas in Bengaluru (102% increase in 9 
years – 2011 to 2020) compared to Chennai (54.26% increase in 9 years – 2009 to 2017) 
could be one reason. Even in the case of Chennai, the most significant improvement across a 
24 year timeframe is 0.0014, assuming 3% of the population is undertaking UPA activities. 
This indicates that UPA does not contribute significantly to a change in NDVI. 

The mean LST values showed a decreasing trend in Bengaluru and an increasing trend in 
Chennai. It is safe to assume that the reasons for this trend are intrinsic to the topography of 
the respective cities. Concerning urban farming, the minimum decrease in mean LST is 
0.170C in Bengaluru (when comparing the 3.5% scenario with the absence of UPA in 2020) 
and 0.140C in Chennai (when comparing the 3% scenario with the absence of UPA in 2017). 
The increase in LST is estimated at 0.30C in Chennai (2017 to 2041) while the decrease in 

1 https://www.unm.edu/~jbrink/365/Documents/Calculating_tree_carbon.pdf
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LST is estimated at 0.310C to 0.410C in Bengaluru (2020 to 2032). While these numbers 
seem small in absolute terms, our results indicate that there is likely to be a significant 
localized difference in temperatures where urban farming is practiced. 

Our work contributes to our understanding of UPA in two distinct ways. Our first 
contribution is methodological. The use of remote sensing and CA-Markov modeling has 
been commonplace in the area of land-use studies. We show that these methods can be used 
to study and quantify the impacts of UPA as well. We combine LULC analysis techniques 
with survey data to capture ground realities, and scientific formulations to determine the 
impact of UPA over time on parameters related to land surface temperature and the ability to 
sequester carbon. By bringing in and integrating techniques from diverse fields we show how 
spatial and temporal aspects of UPA can be studied and measured. This innovative approach 
opens up avenues of research that can supplement traditional qualitative or micro-quantitative 
studies and can help us estimate the overall impact of UPA on a number of parameters. 

Our second contribution is towards our understanding of the impact of UPA and its bearing 
on policy development. Qualitatively the positive effects of UPA are well documented. Our 
models indicate that the impacts of UPA in terms of carbon density and the ability to 
sequester carbon are small, but non-negligible. Similarly, while UPAs impact on NDVI is 
minimal, we expect to see non-trivial impacts on LST at least at a localized level. Such 
findings can help policymakers determine whether to set policies and metrics around UPA 
growth and if so what these levels could be.

We acknowledge that our study is limited by several assumptions that we have made. Other 
explanatory variables may have increased the accuracy of our models. However, we believe 
that our urbanization estimates and therefore our estimates of UPA growth are on the 
conservative side and are likely to be higher in practice than what our models suggest. Larger 
surveys may help us peg the levels of current UPA practice more accurately and reduce the 
need for creating multiple scenarios. We believe that these limitations can be overcome in 
future work. Our primary goal in this paper was to demonstrate an integrated approach that 
combines remote sensing techniques with primary data to quantify and estimate the impacts 
of UPA. Our findings show that such integration is both possible and beneficial to our 
understanding of UPA benefits and impacts. We invite other researchers to join us to help 
refine and fine-tune our approach by building more accurate land cover simulations in the 
UPA context, collecting sharper data on UPA trends on the ground and exploring the impact 
of UPA on other variables such as air quality and livelihoods. In the process we hope to 
catalyze the creation of more sustainable urban spaces. 
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